					100	10	
Reg. No.:	SUIT PL						
			-				

Question Paper Code: 80576

B.E./B.Tech. DEGREE EXAMINATIONS, APRIL/MAY 2024.

Fifth/Eight Semester

Electrical and Electronics Engineering

EE 8591 - DIGITAL SIGNAL PROCESSING

(Common to : Electronics and Instrumentation Engineering/ Instrumentation and Control Engineering)

(Regulations 2017)

Time: Three hours

Maximum: 100 marks

Answer ALL questions.

PART A —
$$(10 \times 2 = 20 \text{ marks})$$

- State the aliasing effect.
- 2. Consider the analog signal $X_a(t) = 3\cos 210 \pi t$.
 - (a) Determine the minimum sampling rate required to avoid aliasing.
 - (b) Suppose that the signal is sampled at the rate Fs = 300 Hz. What is the discrete-time signal obtained after sampling?
- 3. Determine the fourier series of the signals

(a)
$$x(n) = \cos\sqrt{2} \pi n$$

(b)
$$x(n) = \cos \pi n / 5$$
.

4. Find the circular convolution of the following two sequences:

$$x_1(n) = \{1, 3, 4, 1\}$$
 \uparrow
 $x_2(n) = \{1, 2, 3, 1\}$
 \uparrow

5. Consider the system described by the difference equation

$$y(n) = ay(n-1) - ax(n) + x(n-1)$$

Obtain the direct form II realization of the system.

- 6. Illustrate the procedure for low pass to band stop filter transformation.
- 7. Define zero limit cycle oscillation.
- 8. A low pass filter has the desired response as given below.

$$H_d(e^{jw}) = \begin{cases} e^{-j3w} & 0 \le \omega < \pi/2 \\ 0 & \pi/2 \le \omega \le \pi \end{cases}$$

Determine $H_d(k)$ using frequency sampling technique.

- 9. Sketch the process involved in Echo cancellation.
- 10. Differentiate between fixed and floating point DSP Processor.

PART B
$$-$$
 (5 × 13 = 65 marks)

- 11. (a) (i) Compute the convolution y(n) for $x(n) = \{1, 2, 3, 2, 1\}$ and $h(n) = \{1, -2, -2, 1\}$ using graphical method. \uparrow (8)
 - (ii) Determine the stability for each of the following linear systems (5)

(1)
$$y_1(n) < \sum_{k=0}^{\infty} \left(\frac{3}{4}\right)^k x(n-k)$$

(2)
$$y_2(n) = \sum_{k=0}^{\infty} 2^k x(n-k)$$
.

Or

- (b) (i) Compute the cross correlation $r_{xy}(l)$ of the sequences $x(n) = \{0, 1, -2, 3, -4\}; h(n) = \{1, 2, 1, 0.5\}.$ (7)
 - (ii) Check whether the given signals are power, energy signal or neither

(1)
$$x(n) = j^n + j^{-n}$$

$$(2) x(n) = xj^n (2)$$

$$(3) x(n) = 2^n \cos \pi n (2)$$

- 12. (a) (i) Determine the Z-transform and ROC for the following sequence $x(n) = a^n(\cos \omega_n n) u(n-1) \,. \tag{6}$
 - (ii) Find the Z-transform of the sequence $x(n) \frac{1}{2}(n^2 + n)u(n)$. (7)

Or

- (b) (i) Using partial fraction expansion, determine x(n) if $X(z) = 1/(1-1.5z^{-1} + 0.5z^{-2}). \tag{6}$
- (ii) Consider the signal $x(n) = \left(\frac{1}{2}\right)^n u(n) + \left(\frac{-1}{4}\right)^n u(n)$ Determine X(z) and RoC.
- 13. (a) (i) Compute the FFT using DIT algorithm for the sequence given by $x(n) = \{2, 1, 3, 1, 4, 1, 5, 1\}$. (8)
 - (ii) A finite-duration sequence of length L is given as $x(n) = \begin{cases} 1, & 0 \le n \le L 1 \\ 0, & otherwise \end{cases}$

Determine the N-point DFT of this sequence for $N \ge L$. (5)

Or

- (b) (i) Compute the inverse using DIF algorithm for the given $X(k) = \{20, -5.828 j2.414, 0, -0.172 j0.414, 0, -0.172 + j0.414, 0, -5.828 + j2.414\}$ (8)
 - (ii) An FIR digital filter has the unit impulse response sequence given by $h(n) = \{1,2,1\}$. Determine the output sequence in response to the input sequence $x(n) = \{1,2,4,4,3,1\}$ using overlap-save method. (5)
- 14. (a) Design a digital low pass Butterworth filter using bilinear transformation technique for the following specification. (13)

Passband ripple (or peak-to-peak ripple): -0.5 dB

Passband edge: 1.2 kHz

Stopband attenuation: -40 dB

Stopband edge: 2.0 kHz

Or

(b) The desired response of a low pass filter is

$$H_d(e^{j\omega}) = \begin{cases} e^{-j5\omega}, & -3\pi/4 \le \omega \le 3\pi/4 \\ 0, & 3\pi/4 \le \omega \le \pi \end{cases}$$

Determine $H(e^{j\omega})$ for M=11 using Hanning window. (13)

15. (a) What are digital signal processors? Explain the architecture with illustrative diagram.

· Or

(b) List the addressing formats and functional modes. Explain their characteristics with examples.

PART C — $(1 \times 15 = 15 \text{ marks})$

16. (a) By means of the DFT and IDFT, determine the sequence x(n) corresponding to the circular convolution of the sequences $x_1(n)$ and $x_2(n)$ $x_1(n) = \{1, 2, 1, 2\}$ and $x_2(n) = \{1, 3, 3, 1\}$.

Or

(b) Realize the following system using cascade and parallel realization

TARVEL STATE OF SHEET AND ADDRESS OF THE STATE OF THE STA

$$H(z) = \frac{(z+1)(z+2)(z-2)}{(z-1)(z+0.5)(z-0.2)}.$$